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Dynamics of ultrashort pulse propagation in a dual-core fiber are governed by a set of coupled
nonlinear Schrodinger equations. We apply numerical and analytical techniques to study the na-
ture of the inelastic interactions between identical soliton pulses propagating in close proximity on
separate cores. We find that the soliton interactions can change from repulsive at small values of
the coupling coefficient to attractive at large values. Representative experimental parameters are

discussed.

PACS number(s): 42.81.Qb, 42.50.Rh, 42.65.—k

INTRODUCTION

Future communication systems are expected to operate
at terabit data rates. These high data rates, combined
with a need for high reliability and precise timing, suggest
that soliton interactions, and, in particular, transmission
and switching of solitons propagating in parallel, are an
important topic of investigation. Just as individual soli-
tons offer an integrity of the basic unit of information,
the interactions of pairs of solitons may offer unique op-
portunities for realizing stable relationships of solitons.

We devote our attention in this article to interac-
tions that are expected to arise between solitons on ad-
jacent cores of a dual-core fiber in order to evaluate their
prospects for use in all optical switching or gating devices.
This work differs from previous work on pulse switching
in nonlinear directional couplers [1-3] in that we consider
using the interaction as a means of rearranging the tem-
poral position of a pulse in its bit window as opposed to
launching a pulse on one core and switching that pulse
to the adjacent core.

In 1989, Abdullaev, Abrarov, and Darmanyan (AAD)
[4] examined theoretically the interaction forces between
pulses launched on adjacent cores of a dual-core fiber.
These interactions were shown to be similar in nature and
behavior to interactions observed between solitons prop-
agating on the same single-mode, single-core fiber [5,6].
AAD addressed this problem analytically by invoking an
inverse scattering perturbation technique. The results
displayed both attractive and repulsive interactions be-
tween solitons on adjacent cores of a dual-core fiber.

A frequency shift in the power spectrum of a soliton
can alter its velocity. It is helpful to keep in mind that
the physical influence between two solitons occurs due
to the evanescent-field coupling. The interaction force is
a result of the asymmetry in the self-phase modulation
at the leading and trailing edges of the pulse caused by
the influence of the evanescent field of one pulse overlap-
ping with the other pulse. The spectral shifts change the
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pulse velocity because of the medium dispersion. Since
the solitons are robust and readjust their shape under the
action of the perturbation, the complex physical changes
due to the field coupling are closely modeled by an effec-
tive force concept.

In this paper we present work that extends the in-
vestigation of dual-core soliton interactions begun by
AAD. Our approach is both analytical and numerical.
We invoke a variational formalism involving trial func-
tions in order to describe the main characteristics of the
pulse evolution as determined by the coupled nonlin-
ear Schrodinger equations (CNLSEs). A complimentary
analysis of the Hamiltonian system is presented which
correlates well with the results found from the variational
analysis. Our results are confirmed and expanded by the
use of numerical simulations which indicate the extent
to which the variational method may be used to model
such problems. We find results similar to, but not in ex-
act agreement with, those of AAD. Moreover we explore
effects which, to our knowledge, have not been previously
reported and are absent from AAD’s treatment.

The work is organized as follows. In Sec. I the CNLSEs
are introduced, the variational formulation is developed,
an investigation of the global dynamics of the system is
explored through a Hamiltonian analysis, and the analyt-
ical results are presented. In Sec. II details regarding the
numerical analysis and the computational algorithm for
solving the CNLSEs are outlined. In Sec. III we discuss
the main results via a comparison between the predic-
tions made from the variational analysis, the published
results of AAD, and the results of numerical simulations.

I. ANALYTICAL METHODS

In the past, variational approaches have provided ac-
curate information regarding the propagation of pulses
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under the action of the NLSEs [7—9]. This method can
likewise be applied to the CNLSEs [3,10]. The “action”
integral is constructed with a Lagrangian function. The
Euler-Lagrange equations that extremize the action cor-
respond to the CNLSEs. By appropriately choosing the
field’s trial functions, which contain several variational
parameters, the action is optimized using a Rayleigh-Ritz
procedure. This yields the closest solution of the problem
consistent with the trial function. Although successful
implementation critically depends on the trial function,
this method has the advantage of providing analytical
expressions for the pulse evolution.

Once chosen, the trial function cannot change its
shape. The parameters form a system of ordinary differ-
ential equations, which, in general, necessitate recourse
to numerical tools. Although the new system of ordinary
differential equations may be less demanding computa-
tionally than the original system of partial differential
equations, we cannot obtain analytical solutions unless
further simplifications are made. Such simplifications are
typically chosen to examine more closely a physical situ-
ation of interest.

A. Variational analysis

To begin the variational analysis, we first identify the
set of equations (CNLSEs). In our problem we assume
that effects on any optical pulse in the first core due to
the of the existence of the second core can be represented
by introducing a linear coupling to the field on the second
core [4,11]:
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ot = 3o + il b+ i, ®
9 . O . .
o = 5 5% ilval? ba + icth, @

where € is the linear coupling coefficient and the physical
parameters are scaled to soliton units [12,13]. In these
units, time is scaled to a pulse width Ty and the electric
field envelopes are scaled by an amplitude Ey, i.e., E; =
Eoyj, where j = 1,2 labels the core. The amplitude and
pulse width of a fundamental soliton are related by

|52| = nzkoEgToz’ (3)

where (35 is the group velocity dispersion, n, is the non-
linear Kerr coefficient, and kg is the free-space wave num-
ber. _

The coupling coefficient in units of inverse meters is
approximately expressed as [11]

€= mAn U exp| — wi (4)
B ncoreZPOW VBK]?(W) P Po ’

In Eq. (4), An is the refractive index difference between
the fiber core(s) and the cladding, ncore is the core’s re-
fractive index, pg is the core radius, and ! is the center

to center separation between the fibers. The modified
Bessel function appears in the denominator; K (W) and
the remaining parameters V,U, and W are related such
that

V = 27z\p0 vV 2nc0,eAn,
U=+vi+zhV, (5)
W =+V2_U2

Values for the coupling coefficient are sensitive to the
choice of separation between the fibers, as well as the
wavelength. Table I provides typical values of the cou-
pling coefficient as a function of core separation, assum-
ing two different values for the pulse duration Ty. The
calculations presume a fundamental soliton launched in
silica fiber.

Equations (1) and (2) are formulated as a variational
problem such that

6//Ldzd7- =0, (6)

with the appropriate choice of Lagrangian density £. We
find that the appropriate Lagrangian density is given by

L =i(Y19], — ¥1.97) + (Y293, — ¥2.943)
+ (191217 = [91]*) + (|2r|? = [92]*)
+2e(Piha + P3h1). (7)

The asterisk denotes complex conjugation and the sub-
scripts z and 7 denote partial derivatives. The original
system of equations Eqgs. (1) and (2) are then derived
from Euler-Lagrange equations for each field v; such that

o oL a aL oL
— + — =0, (8)
0z (31//2;) or (31/1;2) oy

where 1; =1 or ¥s.

Our interest in this approach is to uncover the dynam-
ics of soliton-soliton interactions between pulses residing
on adjacent cores in a dual-core fiber. Here we follow the
analysis of Ueda and Kath [3]. In constructing our trial
function, we introduce parameters that may be impor-
tant in this interaction.

TABLE I. Coupling coefficients for soliton pulses of various
duration in silica fiber: An = 5.00 x 1073, ncore = 1.44,
po = 4.00 um. The beat length is defined as 7 /e.

! (pm) € (1 ps) € (0.25 ps) Beat length (m)
35.0 17.49 1.09 8.98
3.0 12.75 0.797 12.32
37.0 9.30 0.581 16.90
38.0 6.78 0.424 23.17
39.0 4.95 0.309 31.76
40.0 3.61 0.226 43.51
41.0 2.64 0.165 59.61
42.0 1.92 0.120 81.63
43.0 1.41 0.0879 111.8
44.0 1.03 0.0642 152.9
45.0 0.751 0.0469 209.3




In choosing the envelope function, we note that for the
case of interacting solitons on the same core, solutions
with hyperbolic secant envelope forms have been found.
It seems reasonable to presume, at least initially, that in
the case of moderate coupling, a hyperbolic secant form
for the envelope is preserved for the pulses on adjacent
cores of a dual-core fiber. Finally, for convenience we
introduce symmetrical trial functions and variational pa-
rameters

T —

P = nsech(Ty) exp{i[v(T — y) + o]}, (9)

Py = nsech(%) exp{i[—-v(r +y) + 7]}, (10)

where 7 is the amplitude of each wave, 2y is the separa-
tion of the pulse maxima, 2v is the relative velocity of the
two fields, and o and @ are the phases of the pulses on
each core. We further constrain ourselves to the case of
w = 1/7 since we are interested in fundamental solitons
launched on the coupled fiber system.

We then proceed to evaluate the integral

A= /CdT.

Inserting our trial functions Egs. (9) and (10) into the
Lagrangian £, evaluating Eq. (11), and defining Ao =
(¢ — o), we obtain

(11)

8men cos(Ao) sin(2vy)
sinh(2yn) sinh(7v/7n)

(12)

Upon varying the action with respect to the variables of
interest n,w,v,y,0, and @, the following equations de-
scribing the evolution and motion of the pulses are ob-
tained:

dn _ 2mensin(2vy)sin(Ao)

dz  sinh(2yn)sinh(7v/n)’ (13)
dn _ 2wensin(2vy)sin(Ao)
dz ~ sinh(2yn)sinh(7v/n)’ (14)
dv _ 2mecos(Ao)
dz  sinh(wv/n)
(v/7) sinh(2yn) — sin(2vy) cosh(2yn)
X |: sinh 2(2y7]) ] ’ (15)
dy e cos(Ao) .
o = + sinh(2y7) sinh 2(rv)/7) [Zy cos(2vy) sinh(mv/7)
—% sin(2vy) cosh('n'v/n)} . (16)
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Note that Egs. (13) and (14) only differ by a minus sign.
The only way that both equations can hold is if both are
equal to zero. This can be accomplished by restricting
our consideration to those cases where the phase differ-
ence is Ao = 0,m,2m,...,mm and m is an integer. This
choice restricts the initial conditions of the phase differ-
ence for the two fields. The remaining equations [Egs.
(15) and (16)] define the relative velocity and relative
separation of the pulses with respect to a common cen-
ter.

In the limit of small initial separation, Egs. (15) and
(16) can be used in combination to find an evolution
equation which describes the behavior of these pulses as
they propagate. Specifically, the equations show how the
separation between the pulses evolves during propaga-
tion. For small separations and relative velocities, the
equations can be linearized and reduced to a second-order
differential equation

d?y
where
4en? cos(Ao) m2e cos(Ao)
= 1-—- . 18

Equation (17) has three distinct regimes. Clearly, when
Ao = m or an odd multiple of 7, then @ < 0 and Eq.
(17) is a simple harmonic oscillator equation. The so-
lutions are then sinusoidal or oscillatory in nature. We
shall term the conditions which result in this type of so-
lution as the “attractive interaction” since it physically
corresponds to the case where pulses oscillate about some
common center position as they individually propagate
down their own fiber cores. This common center position
propagates with the average of the linear group veloci-
ties of each of the individual pulses. When Ao = 0 or
an even multiple of 7, and [e/n2] is small, then a > 0
and the solutions are exponentially growing. The inter-
action corresponding to this solution will be termed the
“repulsive interaction.” The exponentially growing solu-
tion physically corresponds to the case where the pulses
continuously increase their relative separation as they in-
dividually propagate down their own fiber core.

The repulsive regime is fragile and depends on the size
of the parameter [6/772]. When 0 < € < [3172/7r2] , the so-
lution is exponential as discussed above. The interaction
becomes attractive, however, when € > [3172/7r2]. For the
attractive case Ao = 0,mm (m is an even integer), the
period of oscillation is given by 3w /4/e(m2e¢ — 3n2). In
the case of Aog = 7,nm (n is an odd integer), the period
of oscillation is given as 37/ /€e(mw2e + 3n2). A summary
of these results are given in Table II.

We can compare these analytical results with those
obtained by AAD. As stated earlier, AAD analyzed the
same problem using a perturbative technique on the in-
verse scattering method. The results obtained by AAD
are qualitatively similar; however, quantitatively they
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TABLE II. Analytical predictions of coupled soliton interactions. ISM is the perturbation on

inverse scattering method.

Analytical method Phase difference (Ao)

Coupling coefficient Period or growth time

Repulsive interaction

2z
Variational analysis 0 0<e< 3 3
45(37]2-125)
ISM 0 0<e< oo e
Attractive interaction
2
Variational analysis 0 €> 3—;’2— 3
E(1l‘2€—3772)
2
Variational analysis T 0<e< 9;:12— B
‘/e(1r25+3’72)
ISM T 0<e<oo T/ %5

differ from ours. Specifically, AAD’s procedure leads to
the evolution equation

d?*y  4en®cos(Ao)

dz2 3 Y-
This equation for the relative separation of the pulses
again yields both an oscillatory and an exponentially de-
caying solution. However, this is where the similarity
ends. AAD’s results indicate that for Ao = 0,mnw (m
is an even integer), the evolution equation always pos-
sesses exponentially growing results. In the case where
Ao = mw,nw (n is an odd integer), the evolution equa-
tion [Eq. (19)] always results in an oscillatory solution
with period 74/3/ (en?). For ease of comparison, and as
a summary, AAD’s findings are also summarized in Table
II.

The differences are clear. First, AAD predict a pe-
riod for the attractive interaction which differs from that
obtained by the variational analysis. The distinction is
most clearly seen in the case of small initial amplitude
(m < 1). Second, AAD predict two distinct classes of
behavior (the attractive and repulsive interaction) which
depend solely on the initial phase difference of the pulses.
In such a case, the only possible manner to change the
nature of the interaction is through the introduction of a
controlled 7 phase change on one of the pulses. In con-
trast, the variational analysis indicates that when pulses
are launched on a dual-core fiber with a repulsive inter-
action (i.e., an exponentially increasing separation of the
pulses with respect to a common center), the interaction
can become oscillatory if the coupling coefficient is suffi-
ciently large. The value of the coupling coefficient may
be altered by a change in the relative separation of the
fiber cores, a change in the value of the nonlinear re-
fractive index, or a change in the soliton pulse width 5.
Therefore, the variational analysis indicates that varying
either the coupling coefficient or the phase relationship
between the pulses could lead to a controllable mecha-
nism for reconfiguring pulse positions.

(19)

B. The NLSEs and CNLSEs
as a Hamiltonian system

‘While the variational analysis of the CNLSEs is helpful
in deriving a set of ordinary differential equations for the

adiabatic variation of a select number of parameters de-
scribing soliton propagation in a dual-core fiber, it does
not provide a clear physical insight into the global dy-
namics of the system. To obtain a more general picture,
we turn to a Hamiltonian analysis of this problem.

Both the NLSEs and CNLSEs are associated with con-
servative Hamiltonian systems. Using a suitable choice
of soliton parameters, one can obtain evolution equations
for the system from the Hamiltonian. This approach is
attractive in that an immediate global picture of the pulse
dynamics may be obtained by drawing phase-space dia-
grams. In this section we evaluate the Hamiltonian for
our parametrized system and find the phase-space dia-
grams which describe the pulse dynamics for the dual-
core system of interest.

By analogy with classical mechanics, we can define a
Hamiltonian density for a system from the known La-
grangian density. This Hamiltonian density will, in turn,
be directly related to the energy of the system, which is
a conserved quantity and is given as

H=) pigir — L. (20)
The momenta p; are given as
ac

i = RN 21

where the g; correspond to the fields 1; and the subscript
7 refers to partial differentiation with respect to local
time.

In general, the Hamiltonian for the CNLSEs is given
by

H = H, + Hy; + Hiy, (22)
where
[e <]
H = HdT (23)
and
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oo
Hint = / 2E’¢Y1¢; d'r. (25)
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For our ansatz, the choice of n = 1/w, it can be shown
that the CNLSEs obey the first three conservations laws,
that is, the total “energy,” the “momentum,” and the
“number of particles” summed over both cores remain a
constant. Additionally, for the choice of initial phase dif-
ference Ao equal to 0 or w, the Hamiltonian is conserved
on each individual core.

Utilizing the Lagrangian density found above and Eq.
(20), we find the energy for our system to be given by

B = dn|—o? + n 2.71'5 cos(Aa.) sin(2vy) . (20)
3 sinh(2yn) sinh(wv/n)
E is constant for a dynamical trajectory in the phase
space. We choose the coupling coefficient €, the initial
phase difference Ao, and the initial amplitude 7 as fixed
parameters. This leaves only the relative velocity v and
the pulse separation y as free parameters. We can con-
struct a phase-space diagram by plotting the value of the
Hamiltonian for various initial conditions of pulse sepa-
ration y and relative velocity v. We begin by investigat-
ing the attractive interaction with coupling coefficients
€ = 0.1, Ao = m, and n = 1 in Fig. 1. It should be
noted that the trajectories obtained using the Hamilto-
nian analysis were reconstructed using a direct integra-
tion of the coupled equations. The contours are labeled
by the value of the energy. Bounded trajectories oc-
cur near the origin and unbounded trajectories occur for
large relative velocities. For values of the energy above
1.5 we obtain bounded, elliptical orbits. When the value
of the energy is 1.4, the phase-space trajectory is dis-
torted indicating a region of transition. For values of the
energy below 1.4, the trajectories are unbounded indicat-
ing that for sufficiently large initial separation and/or rel-
ative velocity the pulses will each retain their own group
velocity and maintain their initial separation. This is
consistent with our findings in the variational analysis
above. [Recall that a condition for obtaining Eq. (17)
was the consideration of small initial separation.] As the
amplitude of the pulses is increased to 1.5, as shown in

Relative Separation

L

03 01 o1
Relative Velocity

FIG. 1. Constant energy contours for the case Ao = m,
€ =0.1, and n = 1.0.

Fig. 2, we again find two distinct phase-space trajectories
separated by a transition region. However, the conditions
leading to bounded orbits in phase space become more
restricted with respect to initial separation. When the
amplitudes are decreased, we found that the initial pulse
separation could be larger and still lead to bounded, os-
cillatorlike orbits. These findings have been confirmed by
the numerical simulations.

The phase difference Ao = 0 is investigated next. Re-
call that the variational analysis of this case predicts a
phenomenon not found by the perturbative analysis of
the inverse scattering treatment. Specifically, the vari-
ational analysis predicts the existence of a transition
from a repulsive to an attractive interaction, dependent
upon the coupling coefficient between cores and the ini-
tial pulse amplitudes. We investigate this situation by
generating the contour plots of the energy for a range of
initial conditions. Figures 3 and 4 are contour plots for
two different values of the coupling coefficient. In Fig.
3, when € = 0.1, and = 1.0, any choice of initial con-
dition for the pulse separation will result in a repulsive
interaction; the phase-space origin is a saddle point. As
the value of the coupling coefficient is increased to € = 1,
however, bound states begin to emerge near the origin of
the phase-space diagram. Initially the pulse separation
corresponding to these bound states is confined to a nar-
row region near the origin; as the value of the coupling
coefficient increases, so does the range of values for initial
separation that will support an oscillatory state.

The results of the Hamiltonian analysis complement
those predicted by the variational analysis. Both the at-
tractive and repulsive interactions have been identified
through this analysis. Moreover, the existence of a cou-
pling coefficient dependent transition from a repulsive to
attractive interaction is confirmed by this analysis. The
Hamiltonian analysis further indicates that in the case of
the so-called “attractive interaction,” when either the ini-
tial separation or the initial velocity is sufficiently large,
the bound-state interaction is not observed. The depen-
dence of this transition on the initial pulse separation
indicates that pulse overlap plays a key role in the inter-
action.

In order to more accurately consider what would truly

Relative Separation

‘ -d.l I 011 0‘|3
Relative Velocity

FIG. 2. Constant energy contours for the case Ao = m,

e=20.1,and n = 1.5.
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FIG. 3. Constant energy contours for the case Ao = 0,

e = 0.1, and » = 1.0.

occur in an experiment, as well as to ascertain the rel-
ative merits of analytical methods employed above, we
compare these analytical results with those obtained by
numerically evaluating the original CNLSEs [Egs. (1) and
(2)]. For clarity we first describe the method by which
we solve the CNLSEs. We then will proceed to describe
the results obtained from these simulations.

II. NUMERICAL METHODS

To numerically solve the CNLSEs, we use the split-
step beam propagation method. The equations can be
written in vector form as

~aX=DV+NV,

5 (27)

where D is a linear operator whose form is given by

We define 0 and o; as 2x2 matrix arrays given by

10 (01
%=101) %*T\10)"

-1 E =

2F :
0.8
L T . x

05 03 01 ol 03 05
Relative Velocity

Relative Separation
[«

FIG. 4. Constant energy contours for the case Ao = 0,
€ =1.0, and n = 1.0.

‘We can then define the nonlinear operator N as

2
N=if ¥l 0 ) .
( 0 |3
The formal solution of Eq. (27) is
V = Vyexp /(D + N)d=. (28)

The operators are separated by splitting the expo-
nential into an approximate form given in the book by
Agrawal [12]. The error is minimized by choosing Az
small enough; typically we choose values around 1073.
The operators D are diagonalized by applying the fast
Fourier transform algorithm. We use 2048 points in our
program with a time window of 40. The advantage of
this form of solution is that it is exact for the linear equa-
tion. Moreover, the nonlinear contribution is oscillatory
and bounded; therefore it does not develop a runaway
numerical instability.

To improve further on the accuracy of the evaluation
of the nonlinear contribution to the integral, we employ
an iterative procedure as described by Agrawal [12]. We
found that two iterations of the algorithm provided suf-
ficient convergence of the solution.

III. SIMULATION RESULTS FOR THE
COUPLED NONLINEAR SCHRODINGER
EQUATION

Following the algorithm outlined above, we proceed to
test the analytical results. First, the existence of the at-
tractive and repulsive interactions is verified and the re-
sults of AAD confirmed. Through the investigation, we
found that the pulse shapes retained their hyperbolic se-
cant form during the interaction. This was a verification
of our trial functions with one caveat. The amplitudes
n did change by approximately 10 — 20 % as the waves
propagated through the fibers.

We proceed to investigate the discrepancies between
the predictions reported by AAD and those obtained in
the variational analysis. We note that the first differ-
ence arises in the derived period of oscillation for the at-
tractive interaction as a function of coupling coefficient
and initial amplitude (see Table II). To resolve this dis-
crepancy we ran a series of models where we chose an
initial phase difference of Ao = 7 (i.e., the phase condi-
tion whose solution always leads to the attractive inter-
action), a separation of Ay = 2y = 1.2 (normalized time
units), and a coupling coefficient ¢ = 0.1. Simulations
for a range of pulse amplitudes (0.5-2.0) were run. In
Fig. 5, we compare the oscillation periods obtained from
these simulations with those obtained from AAD’s anal-
ysis and those from the variational analysis. We note the
predictions for the period of oscillation made by both an-
alytical techniques as the initial amplitude increases. As
the value for the initial amplitude decreases, differences
between the two analytical techniques become evident.
We note that the variational analysis provides a more
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FIG. 5. Oscillation period as a function of initial ampli-
tude and comparison of numerical results and analytical pre-
dictions.

accurate fit to the numerical results in the limit of small
initial amplitude.

In the limit of large initial amplitude, however, the
numerical results appear to differ significantly from the
predictions of both the variational and perturbative tech-
niques. This discrepancy can be understood physically in
terms of pulse overlap. As the initial amplitudes become
larger, the initial widths decrease. This corresponds to an
effective increase in the pulse separation. Consequently,
the evanescent field overlap decreases. In the numerical
evaluation of the CNLSEs, this effect manifests itself in
smaller values of the field on the second core being cou-
pled to the fields on the first core. Furthermore, we recall
from the Hamiltonian analysis that as pulse separations
increase, the bound interactions diminish until the pulses
eventually propagate independently of one another. To
test whether our understanding is accurate, we ran the
same models as above, decreasing the initial pulse sep-
aration distance to Ay = 0.8. By decreasing the pulse
separation, we should satisfy the conditions of the lin-
earized equations. With this approach, as seen via the
Hamiltonian analysis, decreasing the initial pulse sepa-
ration changes the orbit or phase-space trajectory and
therefore the related periodicity of the interaction. We
observe in Fig. 5 that by decreasing the initial separation
of the pulses, the numerically computed periods begin to
fit better the analytical predictions of the linearized equa-
tions of motion. In general, we find that in those cases
where the perturbative technique differs from the varia-
tional predictions, the simulation results tend to be more
consistent with the results obtained with the variational
analysis. This indicates that the variational analysis is

a more general analytical tool for these types of interac-
tions.

The variational analysis further predicts that both the
coupling coefficient € and the initial phase difference Ao
play a role in the types of interaction observed between
two coupled solitons when the initial phase difference is
given by Ao = 0, 27,47, mn, where m is an even integer.
Specifically, for the case 0 < € < [31}2 /1r2], the pulses
typically increase their separation exponentially as they
propagate. However, when € > [3172 /7r2] and the same
initial phase relationship is maintained, the pulses oscil-
late about a common center in what we have termed the
attractive interaction. Furthermore, based on the infor-
mation obtained from the variational analysis, if the cou-
pling coefficient were chosen such that € = [3n%/#?], it
could be anticipated that the pulses would maintain their
initial separation or at most separate as a linear function
of the propagation distance. Recall that the perturbative
analysis given by AAD assumed € to be small and made
no prediction about this crossover behavior.

To test the predictions we ran a series of simula-
tions where the initial phase difference was given by
Ao = 0, the initial amplitude of the hyperbolic secant
pulse shapes was 77 = 1, the initial separation between
the pulses on adjacent cores of the dual-core fiber were
given in normalized time units as Ay = 1.2, and we var-
ied the value of the coupling coefficient from € = 0.1 to
1.0. The results of these simulations are shown in Figs.
6(b)-6(f), where we have plotted the pulse center on each
core as a function of propagation distance £. To comple-
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ment these data, Fig. 6(a) shows a similar plot for the
case n = 1, € = 0.1, and Ao = w. The pulse center T; is
calculated for the pulse on each core ¢ as

= _ JTi|¥i|dT
Y [R2ldT

For a symmetric pulse that maintains its shape, such as
a solitonlike pulse, Eq. (29) should well approximate the
position of the peak of that pulse.

When € = 0.1 [Fig. 6(b)] the pulses appear to increase
their separation distance exponentially as a function of
propagation distance in a manner consistent with pre-
diction. When € = 0.165 [Fig. 6(c)], the pulses initially
behave as in the preceding case; they separate as a func-
tion of propagation distance. However, at approximately
& = 10, the pulse separation stabilizes and remains sta-
bilized.

When the strength of the coupling coefficient is in-
creased to € = 0.3 [Fig. 6(d)], we do not observe the
expected constant separation of the pulses. Instead we
observe an attractive, oscillatory interaction where the
magnitude of the maximum pulse separation is much
larger than the initial pulse separation and the maximum
pulse separation over a single period of oscillation is not a
constant throughout the propagation. This is contrasted
with the nature of attractive interaction observed when
the initial phase difference is Ao = =; in that case, the
pulse separations never exceed their initial value and gen-
erally maintain a constant value for the maximum pulse
separation throughout the propagation. Additionally, it
should be noted that the oscillations of the pulses about
their common center is not periodic in the case of Ao =
0 and € = 0.3. Instead, the pulses initially pull toward
one another at a much slower rate, gradually decreasing
the periodicity of the oscillation as the pulses propagate.
This value for the coupling coefficient appears to corre-
spond to a transition region between the repulsive and
the attractive case.

When the coupling coefficient is increased further to
e = 0.5, [Fig. 6(e)], we found that, though the rate of
oscillation about a common center has increased, the os-
cillations continue to be aperiodic and the pulse sepa-
rations during oscillation continue to exceed the initial
pulse separation. As in the preceding case, the initial
attractive interaction is much slower than would be pre-
dicted by an oscillator model. The variational analy-
sis with linearized equations of motion predicts that this
value of the coupling coeflicient should correspond to an
attractive interaction with a period of oscillation given
by 3w/+/e(w%e — 3n?). For our parameters, this corre-
sponds to a value of 9.58. Toward the end of the prop-
agation, £ > 15, periodic oscillations appear. The pe-
riod measured 7.0, significantly less than predicted. This

(29)

discrepancy is due to the large pulse separations during
oscillation. Finally, at ¢ = 1.0 [Fig. 6(f)], the attrac-
tive interaction begins to resemble its counterpart for an
initial phase difference of 7. The oscillations appear to
be smoothly periodic and approximately maintain their
initial pulse separation during oscillation. Moreover, the
periodicity of the oscillations, measured at 4.0, closely
approximates the value predicted by the variational anal-
ysis, which is 3.59.

SUMMARY

In summary, we find both through analytical and nu-
merical techniques that solitons launched on adjacent
cores of dual-core fiber exhibit both an attractive and
a repulsive interaction. Our results expand on an ear-
lier paper of AAD. Specifically we find a coupling coeffi-
cient dependence to the nature of the soliton interactions
that has possibilities for exploitation in switching devices.
Our numerical results validate and more closely correlate
with the findings of the variational formulation.

What remains is a discussion of a possible experimen-
tal test of our findings. Table I examines the range of
coupling coeflicients for a particular set of physical pa-
rameters of a dual-core fiber; the values of the core radius
po and the index difference An are typical values at the
wavelength A = 1.55 yum. When the core-to-core separa-
tion is around 40 pm and the pulse widths are 1 ps, the
coupling coefficient is near unity. For the same parameter
values and pulse widths of 250 fs, the coupling coefficient,
according to Eqgs. (3) and (4), will be 16 times smaller.
This would enable an experiment to be designed to cover
the repulsive and the attractive regimes. The length of
fiber needed to observe the oscillations is around three
dispersion lengths for ¢ = 1 (To = 300 fs). The disper-
sion length in the first instance is 50 m and the second
is 3.125 m. In either case, about 150 m of fiber would be
sufficient to observe a full oscillation period. The peak
power required for the shortest pulses is about 18 W and
for the longer pulses it is reduced to about 2 W.
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